Section 5.2

Log Rule for Integration: Let u be a differentiable function of x.

$$1. \quad \int \frac{1}{x} \ dx = \ln|x| + C$$

$$2. \quad \int \frac{1}{u} \ du = \ln|u| + C$$

1) Find
$$\int \frac{3}{x} dx$$
.

2) Find
$$\int \frac{1}{5x+2} dx$$

- 3) Find the area of the region bounded by the graph of $y = \frac{2x^2}{(x^3+3)^2}$, the *x*-axis, and the line x=2.
- 4) Find the following:

a)
$$\int \frac{2x+3}{x^2+3x} dx$$

b)
$$\int \frac{-\csc^2 x}{\cot x} dx$$

c)
$$\int \frac{6x^2+4}{x^3+2x} dx$$

5) Find
$$\int \frac{2x^2 - 3x + 6}{x^2 + 3} dx$$

6) Find
$$\int \frac{5x}{(x+2)^3} dx$$

7) Solve the differential equation
$$\frac{dy}{dx} = \frac{1}{\sqrt{x}(\sqrt{x}+2)}$$
.

8) Find
$$\int \cot x \, dx$$

9) Find
$$\int \csc x \, dx$$

10) Evaluate
$$\int_{\pi/6}^{\pi/2} \sqrt{1-\cos^2 x} \, dx$$

11) Find the average value of
$$f(x) = \cot x$$
 on the interval $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$.